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Introduction.

In a previous paper* it was shown that the quantum theory of conduction
leads naturally to a division of crystals into conductors and insulators, and
various properties of insulators were worked out. Since that paper was written,
experimental material has come to my notice which necessitates an extension
of the theory to include the effect of impurities, as it appears that impurities
dominate the electrical properties of the semi-conductors. As the substances
which show a negative temperature coefficient of the electrical resistance fall
into two main classes, it will be as well to define what we mean by an electronic
semi-conductor. In the first place, there are substances such as silicon which
show a negative temperature coefficient in the impure state, but which are
good metallic conductors in the pure state and are therefore to be classed as
metals. The negative temperature coefficient is probably due to surface
effects caused by the presence of oxide, and a tentative theory in this direction
has been recently proposed by Frenkel.t Secondly, there are substances such
as cuprous oxide which always show a negative temperature coefficient and
which become much worse conductors when the amount of impurity present is
reduced. Only these latter substances are to be regarded as semi-conductors,
and it is with them that we shall deal in this paper. Lastly, there are some
substances such as germanium which probably belong to both classes. That is,
in some modifications they are metallic and in others insulating.

* ¢ Proc. Roy. Soc.,” A, vol. 133, p. 458 (1931), referred to as loc. cit.
T ¢ Phys. Rev.,” vol. 36, p. 1604 (1930).
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The treatment of semi-conductors given in the previous paper depends on
the fact that the energy spectrum of an electron moving in a perfect lattice
splits up into bands of allowed and disallowed energies, and if there are just
sufficient electrons present to fill up one of the allowed bands there can be no
conductivity at absolute zero temperature. Under these conditions it was
shown that if AW is the minimum energy required to remove an electron into
the next higher band of allowed energies, then for low temperatures the con-
ductivity ¢ is given by o = oy exp (—AW/2kT). The experimental results®
on cuprous oxide can be expressed by such a formula with $AW = 0-3 volt
approximately. On the other hand, the inner photo-electric absorption in
cuprous oxidet shows that for the pure substance AW is about 2 volts, and in
general it seems that for all substances AW is of the order of a few volts, except
for metals where it is, of course, zero. If this is true, then no pure non-metallic
solid can ever have a significant natural electronic conductivity at ordinary
temperatures, and the observed conductivity of semi-conductors must be due
to the presence of impurities. This view is put forward by Gudden and
analysed in some detail in the paper quoted above. The evidence seems
convincing, and we shall here work out some of the consequences of this
hypothesis. Of course, if there should be substances for which AW is small,
the previous results will apply, but for the substances so far examined AW is
about 2 volts.

It is easy to obtain a qualitative view of the effect of impurities. Consider
first a perfect lattice and a single electron. If the electron is in the neighbour-
hood of a particular lattice point it can jump to a state of equal energy in the
neighbourhood of the next lattice point even although it has to pass through
a region where its kinetic energy is negative. In this way an electron can move
through the lattice and act as a free electron. This description is correct so
long as the lattice is perfect, since the electron can always jump from one state
in the neighbourhood of a lattice point to a state of equal energy in the neigh-
bourhood of the next lattice point, as all the lattice points are equivalent. When,
however, there are impurities, the case is altered if the electron is originally
attached to a foreign atom. For the electron to be free it must be able to jump
to a state of equal energy, and this it can only do by jumping to a similar atom,
except in the event of the energy level of the foreign atom coinciding with that
of the pure substance. Since the transition probability falls off exponentially
with distance the probability of an electron jumping from one foreign atom to

* W. Vogt, ¢ Ann. Physik,” vol. 7, p. 183 (1930).
1 B. Gudden,  Ber. Phys. Soz. Erlangen,” vol. 62, p. 289 (1931).
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another is quite negligible if the amount of impurity present is small, and so in
general the electrons belonging to impurities are bound electrons and not free.
Several cases now arise which may be illustrated by the figure below, which
represents a linear lattice in which occurs one foreign atom.

The potential energy of an electron is drawn and the shaded bands represent
some of the permitted energy bands of the perfect lattice, which are only
altered to a negligible degree by the presence of the foreign atom. The foreign
atom has a discrete energy level, denoted by the horizontal line AB, which is
normally occupied by an electron.

(1) If there are not sufficient electrons per atom of the pure substance to
fill up band 1, then the foreign atom will become ionised and its electron will
pass over into band 1. In this case the substance is a metal and the only
effect of the impurity is to contribute to the residual resistance by acting as a
scattering centre for the free electrons.

(2) If there are just sufficient electrons to fill up band 1, then the foreign
atom will retain its electron at absolute zero temperature and the whole
substance will be non-conducting. At higher temperatures it is possible,
owing to the thermal vibrations, for the electron in the state AB to jump to a
neighbouring atom of the pure substance. It will then be in band 2 and will
be able to act as a free electron. In this case the conductivity will have a
factor of the form exp (— A/ET), but A is not here connected with the minimum
energy difference between the bands 1 and 2, but between the state AB and
the band 2. It is obviously possible for this latter energy difference to be
much smaller than the first, so that the thermal motions can excite electrons
from the foreign atoms while quite incapable of exciting those from atoms of
the pure substance. It should be noted that electrons on a foreign atom do
not take part directly in conduction. They must first be transferred by the
effect of the lattice vibrations to an atom of the pure substance. In this case
the main function of the impurities is to provide electrons for the upper
unoccupied energy bands of the crystal, while acting as scatterers is only a
secondary function.

(8) If there are sufficient electrons to fill up band 1 entirely and band 2,
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either wholly or in part, then the foreign atom can only act as a scatterer
contributing to the residual resistance.

Semi-conductors obviously fall under the second heading and the condition
for their occurrence is the presence of impurities such that the minimum energy
difference between AB and band 2 is small enough to give a measurable con-
ductivity at ordinary temperatures. If this is the correct view then the
occurrence of semi-conductors is purely accidental. This is not in disagreement
with the facts as there seem to be no other properties distinguishing insulators
from semi-conductors.

The Equalibroum Distribution.

1. The formul given in the previous paper have to be modified a little as
some of the approximations used no longer hold. The effect of this is to
modify the temperature dependence of the conductivity in a way which we
shall now work out. We consider as model a simple cubic erystal containing
G3 atoms of which N are foreign atoms. We shall assume that (G2 — N;)/G3
is effectively unity, and we shall neglect the disturbing effect of the impurities
on the lattice. This latter effect gives rise to a resistance analogous to the
regidual resistance in metals and could be easily included, as the necessary
calculations have been carried out by Nordheim.* This resistance is the
dominating factor at very low temperatures, but at ordinary temperatures it
is outweighed by the resistance arising from the lattice vibrations, and in
order not to complicate the equations too much we shall omit it. We assume
that each of the N, atoms of impurity possesses a single electron in a discrete
state of energy W, and that the electrons belonging to atoms of the pure
gubstance form closed shells of energy less than W;. The next band of allowed
energies of the pure crystal is taken to be given by

Biye = Wy -+ 68 — 2 (cos & + 005 7 -+ cos §), (1)
where the permissible values of &, v, { are 2rG (0, 4-1, 42, ...), the notation
being the same as in loc. cit. We shall only use this expression for small
values of £, v, ¢, and it then becomes

Bee = Wy + B (€ + 7"+ T3 (2)
We suppose that Wy > W, and we shall neglect entirely the possibility of any
electrons from the closed groups receiving sufficient thermal energy to be

excited into these energy levels.
We must first find the distribution of electrons between the various levels

* ¢ Ann, Physik,” vol. 9, p. 607 (1931).
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when there is thermal equilibrium. The statistics being Fermi statistics, the
number of electrons on the foreign atoms is given by

N,
e )
e kT 1
and the number of electrons with quantum numbers between (£, v, {) and
(& +dE, n -+ dn, {4 dQ) is given by (263/8r%) ng (EnQ)dE dn d¢, where

o (E10) = = @

T

as in loc. cit., section 2. To determine W, we have

N 263" [ (™  dEdnd
No=—w=—+ oy j j j st ©)
e 41 T —mJ

corresponding to loc. cit., equation (25). The work is exactly the same as
before, and provided kT is small compared with (W, — W,) and with {8, we:
have

- W,4+W, kT { G [mkT\3¥%)
Woe= 1 —2__"-1] —= 6
0 D) ° 471-3N0(\ 2L ©)
approximately. To this degree of accuracy (4) becomes
IVIE-TERLR
no &nt) = A/ [ Eone( B e (1)
where P> = E2 4+ 924 It is noteworthy that (W, — W,)/2 occurs in the
exponential factor, and not (W, — W,) as might have been expected. The

formula (6) differs from loc. c@t. (30) by having (=kT/8) instead of (B3,/8s).
This is because we have taken our lower levels as being sharply defined instead
of being spread out into a band, and the approximations previously used do
not apply to this case.

The total number of electrons in the upper band is obviously

G3 kT 3/2 W‘z—"W
SRt =is T ®

and N/G® is ““ the number of free electrons per atom.” The meaning of (8)

is made clearer if we write it in the following form

_ (Ny/G3)~ (T }3/4 W;MWI, ©)

G3 2rt T,
where 8 = kT, and Ny/G® is the ratio of the number of atoms of impurity
present to the number of atoms of the pure substance. This shows that the
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number of “ free electrons ” per atom is proportional to 1/(Ny/G3), and not
to Ny/G3, which is a very surprising result. Finally
N 32 _po

no () = 4 T (L e, (10)

which is equivalent to Maxwell’s law.

The Caleulation of the Conductivity.
2.1. We must now calculate the change in the distribution function of the

free electrons under the combined influence of the lattice vibrations and a con-
stant electric field, F, parallel to the axis of z. We set

n (EnC) = ny (En%) — Ex(E) dno/dE. (11)
In loc. cit., section 3, y (En%) was used instead of £y (E), but the latter choice

is more convenient here. We then have the following integral equation for y
corresponding to equation (45) loc. cit.

2naeF dny, 1 S AL, 1 [, & |

r dE kT Ak T+ 1) (e +1) (e —1) | i Xt |

_ 1 [, & 1
+ L s Az e =g (s (12

T D E Fne g ke @
the notation being the same as in loc. cit. except for the difference in meaning
of . The evaluation of the right-hand side is exactly the same as before and
leads to the following result, as may be seen from equation (61) loc. cit.

———{p-+ps}
Ts kT 22 do [, | okl _ [mak\? 2332'1‘2} h
— 22} )
Nl Eolerolir - R e
vh A (o pg)
T3 raakL 22 dz [ (swm) ‘lﬁﬂw(@\f?@}_« (S)A
Ao Jo F 1Lk (ST TR

= —F, (13}
provided p > g, and provided kT < (W, — W,) and also < 8. The notation

is the same as in loc. cit. except that
_ ea M 16aBpy? (k\))

TR @ 2m0C \dk (14}

We have also used the approximation (7) for n,, which is equivalent to ignoring
the effect of the Pauli principle in limiting the transitions to those in which the
final states are unoccupied. This is justified since the number of electrons in
the upper band is so small that the frr- ~T-~=r~ o Bm o Tomonds b

(=
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and obey Maxwellian statistics. When p <p, the second integral in (13)
disappears, and the bottom limit of the first integral is replaced by

(po — p) VA/makT.

The limits of integration take a more familiar form if we introduce the Debye

characteristic temperature @, defined by
_Vh(3Y
0= ak <4m:,\) ’
Also
_vh _© 1
Po= fraB T T, pre

where T = . Writing therefore « == Vh/(rak®), which is a pure number of
order unity—equal to (4/3n?) ¥3 if our model is exact—equation (13) becomes

(" ir )
ST OSTE SE I

T8 %")(”"ITD) 2 do ( T T\2 42 _
ol Sk i-glg) R G -] = -7
(134)

Since the maximum value that 2 can have is ®/T, the upper limits must be
replaced by this valueif p > 1/k. Such values of p, however, play no significant
part, and in fact for such large values of p the approximations are no longer
valid. Now @ is of order 10? degrees, while T, is probably of order 104 so
the most important range of temperatures from a practical point of view, and
incidentally the range for which (13a) is most easily soluble, is given by
® <T<T, We shall endeavour to obtain a solution assuming that
OLTLT,.

We first suppose that p 2> ©/T,. Then ¢ being defined as Bp?/kT is Toe?/T,
while the maximum value of % is «®p/T approximately. Therefore

It is therefore permissible to expand y(c + z) as y(e) + zy¢'(e) + .... We
use this expansion in (13a) and retain only the lowest powers of ®/T, treating
T/T, as a small quantity of the same order as ®/T. The terms of the integrals
which are left after these approximations reduce to

K@
I rr” (¢) 1 '2>2_____w4dx
e Jyo x szz((a e —1’
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and so we have
_F 1
L= ae o
For values of p not large compared with @/T,, I have not been able to solve the
equation. It is, however, to be expected that the use of (14) will not introduce
a serious error. For values of p <C g, (134) becomes

Ts %)(Z—%ﬂ) z T 2 [T\ x?
=l re+a (157 - 5@ 5 —re]- -

(5, ~)

which ean be solved exactly by

(14)

22 dx
e —1

__ 3T,
L= 30T
It is doubtful how much physical significance is to be attached to this last
result, as for such very slow electrons the lattice vibrations can hardly be

(144)

treated as giving rise to a small perturbation. However, even when we give
them their maximum importance, as here, their contribution to the con-
ductivity is quite negligible.

2.2. We must now calculate the current set up by the field, the stream in the
a-direction per electron being

2req OB _ 4:7180&(32
. kL O% T
The total current is therefore

| e [ g
To= == | go r @) g dadn dk

parallel to the axis of x. For p < pg, x(E) is given by (144), and for p > p,

by (14), but since the contribution to the integral from the range p < g, is

of order (®%/TTy)? compared with the remaining contribution, we may use

(14) for the whole range with negligible error. Hence the conductivity o is

given by
B
F (Ga)? 3hi2a?@2F32T52 ],
= A(N/G3) T—%°2 (15)
. W w,
= B (N,/G3)12 T3¢ 2iT | (16)

where A and B are complicated constants. Equation (15) gives the variation
of ¢ with the number of free electrons, and equation (16) the variation of ¢
with the temperature and with the amount of impurity.
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We may compare (15) with the classical formula
4 e’l N 17

® = GrmeT): (Gap’ (1D
where ! is the mean free path, and N/(Ga)? is the number of free electrons per
unit volume. This is a purely classical result, and it gives no information
about I. The quantum theory shows that ! varies as T~ for temperatures
above the Debye temperature, and so (17) agrees with (15). In deriving (15)
we have made no use of the Fermi distribution, which is only used to determine
the variation in the number of free electrons with temperature, and which
gives rise to the very surprising result expressed by (16). Formula (15) there-
fore holds for any semi-conductor, independently of whether the conduction ig
intringic or due to impurities, while (16) is different in the two cases. In fact,
if the conduction is intrinsic

N o T¥2¢ %,

and so
AW

6 =gGge 2T, (164)

where AW is the minimum energy difference between the bands 1 and 2.

The Hall Effect.

3. As the Hall effect is very useful in determining the properties of semi-
conductors, it is advisable to consider what the theoretical expression for
the Hall coefficient should be. Classically the Hall coefficient only depends on
the number of free electrons per unit volume and not on the mean free path.
We must, therefore, have exactly the classical formula, as the only difference
between the classical and quantum treatments of semi-conductors is that
the quantum theory makes explicit evaluation of the free path. So the Hall
coefficient R is given by

G 3
g
/! /2 3/4 W.—W,
N SR )
0

We see from (19) that it is not possible to determine directly the number of
atoms of impurity present from measurements of the Hall coefficient, as B
is not known. However, it is found experimentally that Ro is approximately
the same for all substances, including semi-conductors, at the same temperature,
and as this quantity is mainly determined by B we may assume that for semi-
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conductors f is of the same order of magnitude as for metals, that is, about
1 volt. It must be admitted that the approximate constancy of Ro is not a
conclusive proof of the constancy of B, on account of the large number of ill-
determined constants occurring in the theoretical formulm, which are as

follows :—
For metals
e @VE? M0
Ro = 487'(35'('5 -_7;2—62—— . '(;-3713 . rf B (20)
while for semi-conductors
__ a2, €02 __1\_4__ £ 1/2@
Ro = s Lt o () - (21)

The ratio of the numerical factors in the two formulee is 6324, which is about
2, and if we assume that the other characteristic constants are of the same order
of magnitude for metals and semi-conductors, then for Ro to be the same in
the two cases we must have 832 for a metal equal to B2 (B/kT)! for a semi-
conductor at ordinary temperatures. This is satisfied if we take B to be about
1 volt in the two cases. Theoretically we should expect 8 for a semi-conductor
t0 be less than B for a metal, since 3 measures the “ looseness of the binding
of the electrons,” and as we have no better evidence than the above to go on
we shall take 1 volt as being an upper limit for B.

Numerical Results.

4. The only results which seem good enough to be used to test the theory are
those of Vogt on.cuprous oxide. He finds that the conductivity and the
Hall coefficient can be well represented by

6 = 0" %" and R = Re"".

They can equally well be represented by the formule derived here, and the
experiments are unable to decide which set is the more correct.

The value of ¢ is about 3900, which corresponds to an energy of about 0-3
volt, and so (W, — W) is twice this, that is, 0-6 volt. It is a most remarkable
feature of the theory that conductivity measurements determine directly
H Wy — W), while the inner photoelectric effect determines (W, — W,).
Unfortunately, an experimental verification of this point seems to be extremely
difficult, since for pure substances for which the photoelectric effect is easily
measurable the conductivity is infinitesimal, while for impure substances with
2 measurable conductivity the amount of impurity present is so small that the
corresponding absorption cannot be detected with certainty.
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Vogt finds that the Hall coefficient of one specimen can be expressed as
eR = 10718 ¢3900/T,

and concludes that there are 10'® atoms of impurity per cubic centimetre.
This is not true, since Boltzmann’s law does not hold. Using equation (19)
we may express R as

¢R = 10163/ essoolT’
and so

@1\;35 = 3yl g3/2 1016 ( g >3/4.
Putting ¢® = 1072 c.c. and B =1 volt, we obtain for Ny/G%? about 10v7,
and so there are about 10 atoms of impurity per cubic centimetre, while
there are about 10%2 molecules of Cu,O per cubic centimetre. This is a con-
clusive proof that the econductivity is due to impurities and is not intrinsic.

To sum up, we may say that the experiments do not contradict the theory,

but this can hardly be taken as a proof of the correctness of the latter, since
the assumptions made by Vogt are also adequate to explain the known facts.
However, the advantage of the present theory is that it gives a definite meaning
to the idea of a “ free electron,” and the number of these is not arbitrary but
is definitely fixed by the arrangement of the energy levels. The most important
point in the theory—the occurrence of {(Wy — W,) in the expression for the
conductivity—does not seem capable of being tested at the moment.




